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a b s t r a c t 

In this paper, we propose a framework for functional connectivity network (FCN) analysis, which con- 

ducts the brain disease diagnosis on the resting state functional magnetic resonance imaging (rs-fMRI) 

data, aiming at reducing the influence of the noise, the inter-subject variability, and the heterogeneity 

across subjects. To this end, our proposed framework investigates a multi-graph fusion method to explore 

both the common and the complementary information between two FCNs, i.e., a fully-connected FCN and 

a 1 nearest neighbor (1NN) FCN, whereas previous methods only focus on conducting FCN analysis from 

a single FCN. Specifically, our framework first conducts the graph fusion to produce the representation of 

the rs-fMRI data with high discriminative ability, and then employs the L1SVM to jointly conduct brain 

region selection and disease diagnosis. We further evaluate the effectiveness of the proposed framework 

on various data sets of the neuro-diseases, i.e., Fronto-Temporal Dementia (FTD), Obsessive-Compulsive 

Disorder (OCD), and Alzheimers Disease (AD). The experimental results demonstrate that the proposed 

framework achieves the best diagnosis performance via selecting reasonable brain regions for the classi- 

fication tasks, compared to state-of-the-art FCN analysis methods. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

Resting state functional magnetic resonance imaging (rs-fMRI) 

ata is a powerful tool to measure the spontaneous nerve ac- 

ivity of the human brain in the resting state ( Betzel and Bas- 

ett, 2017 ). Using the rs-fMRI data to construct the brain func- 

ional connectivity network (FCN) can reveal the pathological ba- 

is of brain disease and develop biomarkers ( Greicius et al., 2003; 

hu et al., 2021 ). Recently, brain network analysis using the rs-fMRI 

ata has been widely used in computer-aided diagnosis of various 

rain diseases such as Fronto-Temporal Dementia (FTD), Obsessive- 

ompulsive Disorder (OCD), and Alzheimers Disease (AD) ( Zou and 

ang, 2020; Shu et al., 2019a ). 

Machine learning techniques has been widely used to analyze 

s-fMRI data. For example, Shen et al. (2017) focuses on first ex- 

racting the semantic information (i.e., features) and then building 

 linear model to identify functional brain connections. Recently, 
∗ Corresponding author at: School of natural and Computational Science, Massey 

niversity Auckland Campus, Auckland 0745, New Zealand. 
1 Jiangzhang Gan and Ziwen Peng contributed equally to this work. 
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eep learning methods (e.g., Yao et al., 2020; Liu et al., 2018 ) 

ere shown to outperform traditional machine learning methods 

y conducting the end-to-end learning. However, they ignore to 

xtract semantic features, which is very important for pathologi- 

al analysis. Hence, this work focuses on designing a new tradi- 

ional machine learning method to extract semantic features for 

nterpretability and conduct disease diagnosis. Traditional diagno- 

is methods with the rs-fMRI data for the brain functional con- 

ectivity network analysis mainly include three steps, i.e., the FCN 

onstruction, the feature learning, and the disease diagnosis. The 

CN construction step models the functional association patterns 

etween brain regions as networks, in which nodes correspond 

o brain Regions Of Interest (ROIs) and edges represent functional 

onnections between two brain ROIs. The popular methods of 

onstructing FCNs have correlation-based approaches ( Chen et al., 

016 ), Granger causality analysis ( Seth et al., 2015 ), regularized 

nverse covariance estimation ( Brier et al., 2015 ), etc. In the lit- 

rature, the correlation-based methods has been pointed out to 

rovide relatively higher sensitivity of the network connection 

 Scheinost et al., 2019; Shu et al., 2019b ). The feature learning step 

rst extracts semantic features (such as the clustering coefficient 

https://doi.org/10.1016/j.media.2021.102057
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2021.102057&domain=pdf
https://doi.org/10.1016/j.media.2021.102057
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2 Different from the conference version in Gan et al. (2020) , this paper made 

the following changes: (1) Section 1 was rewritten; (2) Related work is new; 

(3) Appendix added the theoretical proof of the convergence of Algorithm 1; (4) 

Two more comparison methods (i.e., DIAL-GNN, CNHD) and one more data set 

(i.e., ADNI) were added in Section 3 ; and (5) The templates obtained by our pro- 

posed method and Discussion were added. 
3 If the value of A m, v is negative, we take its absolute value, i.e., a m, v = | a m, v | . 
nd the connection strength) from the FCNs, and then conducts 

eature selection to select the most discriminative feature subset 

or classification, such as the t-test method ( Acharya et al., 2019; 

hu et al., 2020b ) and the Least Absolute Shrinkage and Selection 

perator (Lasso) ( Tibshirani, 1996 ). The disease diagnosis step usu- 

lly employs traditional machine learning methods (i.e., SVM) to 

istinguish healthy subjects from patients ( Rubbert et al., 2019 ). In 

he literature, most studies for the brain FCN analysis focus on the 

CN construction step and the feature learning step. However, due 

o the reasons such as noise, the individual variability for each sub- 

ect, and the inter-group heterogeneity across subjects, many issues 

hould be further addressed for the brain FCN analysis. 

On the one hand, FCNs constructed from the rs-fMRI data 

lays a vital role in the diagnosis of brain neuro-diseases. How- 

ver, due to the influence of various aspects such as noise and 

he curse of dimensionality in the high-dimensional representa- 

ion ( Zhu et al., 2021; 2020a ), it is still a challenging task to con-

truct a FCN that can accurately reflect the functional connectiv- 

ty of the brain. First, the fully-connected FCNs constructed by the 

orrelation-based methods easily suffer from the influence of the 

oise or the false connection, which cannot explain the correla- 

ion between two brain ROIs well and will affect the diagnosis per- 

ormance. To reduce the noisy connection as well as the network 

omplexity, previous methods focused on constructing a sparse 

rain network based on the kNN method ( Zhang et al., 2018 ). 

pecifically, every node connects a subset of nodes (i.e., its k near- 

st neighbors, kNN graph for short) in the sparse brain networks. 

oreover, the nearest neighbor is obtained based on the similar- 

ty measurement. For example, Yang et al. (2016) proposed to first 

alculate the mean FCN matrix of all training subjects within the 

ame time-series block to construct a kNN graph. ( Yao et al., 2020 )

roposed to first calculate Pearson correlation among the nodes 

ithin the individual brain and then to connect each brain region 

ith 8 neighbours for all subjects. However, in real applications, 

onsidering the heterogeneity across different brain regions, the 

onnection number (i.e., the value of k) of each brain region may 

e different ( Zhang et al., 2017b; 2018 ). Hence, it is unfeasible to

onnect every node with the same number of neighbors. Second, 

he brain is the most complex system in the human body. A single 

CN may not be able to capture the subtle disruption of the brain 

unctional tissues caused by neurological diseases, because each 

etwork can only capture a part of the differences between groups 

 Huang et al., 2019; Kong et al., 2020 ). Previous methods (e.g., Wee

t al., 2012a; Wu et al., 2016 ) explored the construction of multiple 

etworks based on the rs-fMRI data for the disease classification. 

owever, these methods did not take into account either the com- 

on information or the complementary information among multi- 

le FCNs, which has been demonstrated to strengthen the disease 

iagnosis in medical image analysis ( Shen et al., 2021 ). Third, the 

CN construction of one subject is not related to the construction 

f others. In this way, the FCNs of all subjects may heterogeneous, 

o the independent process for the FCN construction ignores to 

onsider the group effect, which may result in outputted represen- 

ation has limited discriminative ability ( Zhang et al., 2017c ). 

On the other hand, many fMRI-based methods extract func- 

ional features from FCNs to represent each subject, and then 

nput these features into a predefined classification model for 

he disease diagnosis. The features are usually high-dimensional 

ata, so that feature selection has been used to select the most 

iscriminative features for the disease diagnosis. For example, 

ee et al. (2012b) proposed to first extract the features from both 

he structural and functional connectivity networks, and then em- 

loyed the t-test feature selection method for MCI identification. 

iu et al. (2015) designed to first extract connectivity strength 

eatures from FCNs, and then to perform feature selection us- 

ng the F-score method. These studies show that feature selection 
2 
an improve the diagnostic performance as well as help to dis- 

over biomarkers ( Zhu et al., 2021; Shen et al., 2021 ). However, 

hese methods regarded the feature selection task and the clas- 

ification task as independent tasks, which easily results in that 

he optimally selected features are unsuitable for the classification 

ask ( Zhu et al., 2020b; Hu et al., 2020 ). Although some methods 

e.g., Wang et al., 2019; Ma et al., 2017 ) were proposed to jointly 

erform feature learning and the classification task, the features 

xtracted by these methods usually lack the interpretability. 

To solve the above issues, this paper extend the conference ver- 

ion ( Gan et al., 2020 ) 2 to propose a new framework of FCN anal-

sis on the rf-fMRI data aiming to accurately identify patients of 

rain neuro-diseases. The key characteristics of our framework is 

o investigate a new fusion strategy to explore the complex struc- 

ure of FCNs. Specifically, our framework first applies the kNN 

ased method (e.g., Zhang et al., 2018; Zhang et al., 2017b ) to con-

truct multiple FCNs for each subject, i.e., the fully-connected FCN 

nd the 1 nearest neighbor (1NN) FCN, and then designs a multi- 

usion method to effectively integrate the information from mul- 

iple FCNs, which enhances the common intrinsic structure among 

ll subjects and limits the error caused by the heterogeneity across 

he subjects. In particular, in the multi-fusion process, the num- 

er of edges of each node is updated iteratively, so that the num- 

er of the neighbors for each node is learned automatically. Af- 

er yielding the fused FCN of each subject, our framework extracts 

he upper triangle of the FCNs as the representation of each sub- 

ect, and then employs L1SVM (i.e., � 1 -SVM in the Liblinear toolbox 

an et al., 2008 ) to jointly conduct feature selection (i.e., brain re- 

ion selection) and the classification (i.e., disease diagnosis). The 

owchart of the proposed framework is illustrated in Fig. 1 . 

The contributions of the proposed framework are two-fold. 

irst, this work proposes a novel multi-graph fusion method to 

use FCNs and automatically learn the connections of brain regions. 

n addition, it also designs two regularization terms to achieve the 

roup effect and solve the issue of the heterogeneity across the 

ubjects by pushing the subjects in the same class close to each 

ther and the subjects from different classes far away from each 

ther. Second, the framework employs L1SVM to integrate the fea- 

ure selection and the classification task in a unified framework. It 

s noteworthy that previous methods ( Eavani et al., 2015; Zhang 

t al., 2017a ) focused on separately conducting feature selection 

nd classification. As a result, our proposed framework outper- 

ormed all comparison methods in terms of the classification per- 

ormance, indicating its effectiveness in different neuro-disease di- 

gnosis. 

. Method 

Given the BOLD signal of the m -th subject among M subjects 

 

m ∈ R 

n ×t ( m = 1 , . . . , M) where n and t , respectively, represent the

umber of brain regions and the length of signals, in this paper, we 

rst obtain multiple graphs (i.e., FCNs) A 

m, v ∈ R 

n ×n ( v = 1 , . . . , V ) 3 

y the Pearson correlation analysis where V is the graph number, 

nd then propose to learn a sparse-connected FCN (sparse FCN for 

hort) S m ∈ R 

n ×n for each subject so that it could automatically 

earn the connection number of every node as well as is homoge- 

ous and discriminative to other sparse FCNs S m 

′ 
( m � = m 

′ ). 
i, j i, j 
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Fig. 1. The flowchart of the proposed framework for functional connectivity network analysis using the rs-fMRI data. (1) The original FCNs constructed by the Pearson 

correlation analysis; (2) The multi-FCN (i.e., a fully-connected FCN and a 1NN FCN) for every subject; (3) The proposed multi-graph fusion method, i.e., the key characteristics 

of the proposed framework; (4) The new feature matrix of all subjects, i.e., the upper triangle of each sparse FCN obtained by (3). Moreover, each row is the representation 

of one subject; (5) L1SVM for joint disease diagnosis and brain regions selection. It is noteworthy that steps (1) and (2) are off-line. 
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.1. Multi-graph fusion 

Previous studies demonstrated that the sparse FCN is pre- 

erred in the representation learning of brain functional connectiv- 

ty analysis ( Zhang et al., 2019a; Karmonik et al., 2019 ), compared 

o the fully-connected FCN, due to that (1) the fully-connected FCN 

acks the interpretability; (2) the connectivity between two nodes 

ay contain noisy connectivity (i.e., either irrelevant or spurious 

onnectivity) to affect brain functional connectivity analysis ( Kong 

t al., 2016; Reyes et al., 2018 ); and (3) neurologically, a brain re-

ion predominantly interacts only with a part of brain regions. Ex- 

sting methods of FCN analysis usually obtain sparse FCNs from the 

ully-connected FCNs. Specifically, they design different techniques 

o learn sparse FCNs based on the fully-connected FCNs, such as 

parse learning ( Zhang et al., 2019a; Eavani et al., 2015 ) and clus-

ering ( Wee et al., 2012b; Zhang et al., 2019b ). However, these 

ethods have limitations in the brain FCN analysis. First, exist- 

ng methods usually assume that each node connects a fixed num- 

er of nodes. That is, the connection number is unchanged for all 

odes. To achieve this, the sparse k -nearest neighbor ( k NN) graph 

s constructed so that each node connects with k nodes. Such an 

ssumption obviously ignores the fact that a brain region predom- 

nantly interacts only with a part of brain regions. Second, previous 

ethods generate the sparse FCN of a subject independently from 

ther subjects. On the one hand, by considering the heterogeneity 

cross subjects, the FCNs obtained from these heterogeneous sub- 

ects possibly have different distributions. As a result, the robust- 

ess of the classifier constructed by these sparse FCNs will be af- 

ected. On the other hand, the independent process of representa- 

ion learning makes it difficult to consider the group effect, e.g., the 

iscriminative ability across classes or subjects. 

Given the fully-connected FCN connecting each node with all 

odes, we obtain an extreme sparse FCN, i.e., 1NN graph (excluding 

tself). By this way, we could obtain multiple graphs for each sub- 

ect to solve the first issue of existing functional connectivity anal- 

sis. In this paper, we only use 2 graphs for every subject, i.e., a 

ully-connected FCN and an extremely sparse FCN, by taking the 

ollowing observations into account. The fully-connected FCN con- 

ains all connectivity information (i.e., the most complex connec- 

ivity) and the extremely sparse FCN contain the least information 

i.e., the simplest connectivity). We expect to obtain a flexible con- 

ection number for every node based on the data distribution in 

he range [1 , n ] where n is the node number. To do this, we design

he following objective function to automatically learn specific con- 

ection number for the m th subject S m by fusing the information 

rom multiple graphs. 

in 

S m 

V ∑ 

v =1 

|| S m − A 

m, v || 2 F 

s.t., ∀ i, s m 

i, ·1 = 1 , s m 

i,i 
= 0 , s m 

i, j 
≥ 0 i f j ∈ N (i ) , otherwise 0 . 

(1) 
3 
here ‖ · ‖ F indicates the Frobenius norm. s m 

i, · and s m 

i, j 
, respectively, 

epresent the i th row of S m and the element in the i th row and

he jth column of S m . 1 and N (i ) , respectively, indicate the all-

ne-element vector and the set of nearest neighbors of the i th 

ode. After optimizing s m 

i, · by our proposed optimization method 

n Appendix, we obtain different non-zero numbers for every row, 

.e., s m 

i, · in S m . This indicates that different nodes have different con- 

ection numbers for every subject. 

Eq. (1) employs multiple graphs to conduct the feature or repre- 

entation learning, aiming at selecting an optimal connection num- 

er between 1 and n . However, the optimization of S m is indepen- 

ent on the optimization of S m 

′ 
( m � = m 

′ ), which explores the inter-

ubject variability, but does not touch the issue of the heterogene- 

ty across subjects. To address this issue, we propose the following 

bjective function. 

min 

 

1 , ... , S M , H , G 

M ∑ 

m =1 

V ∑ 

v =1 

|| S m − A 

m, v || 2 F + αR 1 (H , G , S 1 , . . . , S M ) 

+ βR 2 ( S 
1 , . . . , S M ) 

s.t., ∀ i, h i, ·1 = 1 , h i,i = 0 , h i, j ≥ 0 i f j ∈ N (i ) , otherwise 0 , 

g i, ·1 = 1 , g i,i = 0 , g i, j ≥ 0 i f j ∈ N (i ) , otherwise 0 , 

s m 

i, ·1 = 1 , s m 

i,i 
= 0 , s m 

i, j 
≥ 0 i f j ∈ N (i ) , otherwise 0 . 

(2) 

here H ∈ R 

n ×n and G ∈ R 

n ×n are two variables, 

 1 (H , G , S 1 , . . . , S M ) and R 2 ( S 
1 , . . . , S M ) are regularization terms.

e use the summation operator in the first term of Eq. (2) to 

earn the representations of all subjects in a unified framework, 

nd design two regularization terms to achieve the group effect, 

.g., discriminative ability across subjects. We list the details of 

wo regularization terms as follows. 

First, we expect that positive subjects are similar or close to 

he positive template G while negative subjects are similar to the 

egative template H . Hence, the subjects within the same class are 

lose. It is noteworthy that G and H , respectively, can be regarded 

s the common information of the positive class and the negative 

lass. Moreover, the outputted templates could be widely applied 

n medical imaging analysis, such as guiding parcellations for new 

ubjects and measuring the group difference ( Reyes et al., 2018 ). 

o achieve this, we design R 1 (H , G , S 1 , . . . , S M ) as follows 

 1 (H , G , S 1 , . . . , S M ) = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

|D| ∑ 

m =1 

|| S m − H || 2 F , m ∈ D 

|E| ∑ 

m =1 

|| S m − G || 2 F , m ∈ E 

0 , m ∈ U 

(3) 

here D, E, and U , respectively, represent the set of negative sub- 

ects, positive subjects, and unlabeled subjects. Moreover, |D| and 

E| , respectively, indicate the cardinality of D and E . 

Eq. (3) has at least two advantages: 1) preserving the global 

tructure since all the subjects are close to their template and 2) 
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Fig. 2. The visualization of Eq. (4) . The left figure is the original neighborhood 

structure among one subject (i.e., the centered point) and its neighbors. The right 

figure is the final status of the neighborhood structure about this subject after con- 

ducting the proposed multi-graph fusion method, where the subjects with the same 

label are close to each other and the subjects with different labels are far away from 

each other. 
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(

p

t

l

=  

(

T

h

utputting practical templates. However, Eq. (3) does not take the 

ocal structure of the data, which has been regarded as the comple- 

entary of the global structure of the data ( Weinberger and Saul, 

009; Shen et al., 2020 ). In this paper, we design R 2 ( S 
1 , . . . , S M ) as

ollows 

 2 (S 1 , . . . , S M ) = 

∑ M 

m =1 

∑ 

p∈G(m ) || S m − S p || 2 F ∑ M 

m =1 

∑ 

q ∈F(m ) || S m − S q || 2 
F 

(4) 

here G(i ) and F(i ) , respectively, are the set of the near neighbors

nd the set of the distant neighbors, of the i th subject. In the pro-

osed framework, i.e., semi-supervised learning, the training sub- 

ects include labeled subjects and unlabeled subjects, we denote 

he set G(i ) of the i th unlabeled subject as its k nearest neighbors

ncluding labeled subjects and unlabeled subjects, and the set G(i ) 

f the i th labeled subject as its k nearest neighbors with the same

abel to the i th subject. We further define the set F(i ) of the i th

nlabeled subject as its k furthest subjects including labeled sub- 

ects and unlabeled subjects, and the F(i ) of the i th labeled subject 

s its k nearest neighbors with different labels to the i th subject. It 

s noteworthy that the value of k is insensitive in our experiments, 

o we fixed k = 10 for all subjects. Eq. (4) minimizes the ratio of

wo terms, similar to linear discriminative analysis ( Ye et al., 2005; 

hu et al., 2019 ). Specifically, the subjects have the same label with 

heir nearest neighbors, while the subjects with far similarity have 

ifferent labels. In this way, the local structure of the subjects is 

reserved. Fig. 2 visualizes the process of Eq. (4) . The optimiza- 

ion of Eq. (4) is very challenging, so we follow Theorem 1 in 

ang et al. (2014) to convert the minimization of Eq. (4) to mini- 

ize the following objective function: 

M ∑ 

 =1 

( ∑ 

p∈G(m ) 

|| S m − S p || 2 F − λm 

∑ 

q ∈F(m ) 

|| S m − S q || 2 F 

) 

, (5) 

here λm can be updated as λm = 

∑ 

p∈G(m ) || S m −S p || 2 
F ∑ 

q ∈F(m ) || S m −S q || 2 
F 

in the imple- 

entation based on ( Wang et al., 2014 ). 

Compared to previous literature, Eq. (2) outputs the represen- 

ation of every subject depending on other subjects as well as tak- 

ng into account the following constraints, such as multi-graph in- 

ormation, and the preservations of the global and local structure 

mong the subjects. 

heorem 1. The global solution of the following general optimization 

roblem 

in 

v ∈C 
q (v ) 
p(v ) 

, where q (v ) > 0 (∀ v ∈ C) (6) 

an be calculated by the root of the following function: 

 (λ) = min 

v ∈C 
q (v ) − λp(v ) , (7) 
4 
iven that q (v ) − λp(v ) is lower bounded. 

roof. Suppose v ∗ is the global solution of the problem in Eq. (18) ,

nd λ∗ is the corresponding global minimal objective value, the 

ormulation 

q (v ∗) 
p(v ∗) 

= λ∗ holds, so ∀ v ∈ C, we have q (v ) 
p(v ) ≥ λ∗. By 

onsidering the characteristics of p(v ) > 0 , we can yield q (v ) −
∗ p(v ) ≥ 0 , which means: 

in 

v ∈C 
q (v ) − λ∗ p(v ) = 0 ⇐⇒ h (λ∗) = 0 (8) 

hat is, the global minimal objective value λ∗ in Eq. (18) is the 

oot of the function h (λ) . Hence, the proof of Theorem 1 has been

ompleted. �

.2. Joint regions selection and disease diagnosis 

Our proposed framework generates a sparse FCN S m ( m = 

 , . . . , M) from two graphs, i.e., a fully-connected FCN and a 1NN 

raph, for each subject. Moreover, we follow previous methods 

o transfer the matrix representation to its vector representation, 

.e., extracting the upper triangle part of the symmetric matrix S m 

m = 1 , . . . , M) to form a row vector x m, · ∈ R 

1 ×[ n (n −1) / 2] . As a result,

e have the data matrix X ∈ R 

M×[ n (n −1) / 2] and the corresponding 

abel vector y ∈ {−1 , 1 } M×1 . 

Many existing studies separately conduct feature selection and 

isease diagnosis (i.e., classification) ( Kong et al., 2020 ). The goal of 

eature selection is to remove the redundant features from high- 

imensional data because the vector representation is a 4005- 

imension vector for 90 nodes in our data sets. However, the op- 

imal results of feature selection cannot guarantee to achieve the 

ptimal classification in such two separate processes. In this paper, 

e employ L1SVM to jointly conduct feature selection and clas- 

ification, where the result of feature selection will be iteratively 

pdated by the optimized classifier so that finally outputting sig- 

ificant classification performance. 

We list the pseudo of our proposed functional connectivity 

nalysis framework in Algorithm 1 and report its optimization and 

onvergence in Appendix. It is noteworthy that the multi-graph 

usion model uses both labeled subjects and unlabeled subjects 

hile the L1SVM uses the label subjects in training process. 

. Experiments 

We experimentally evaluated our proposed method, compared 

o six state-of-the-art methods, on three real neuro-disease data 

ets with the rs-fMRI data, in terms of binary classification. 

.1. Experimental setting 

.1.1. Data sets 

The data set fronto-temporal dementia (FTD) contains 95 FTD 

ubjects and 86 age-matched healthy control (HC) subjects. FTD 

as derived from the NIFD database managed by the frontotem- 

oral lobar degeneration neuroimaging initiative. The data set 

bsessive-compulsive disorder (OCD) has 20 HC subjects and 62 

CD subjects. The data set Alzheimer’s Disease Neuroimaging Ini- 

iative (ADNI) includes 59 Alzheimer’s disease (AD) subjects and 

8 HC subjects. 

Imaging data acquisition. We used A 3.0-Tesla MR system 

Philips Medical Systems, USA) equipped with an eight-channel 

hased-array head coil to collect all rs-fMRI data. The parame- 

ers of gradient-echo Echo-Planner Imaging (EPI) sequence were 

isted as follows: Field Of View (FOV) = 208 × 180 mm , matrix 

 104 × 90 , 72 slices, TR = 720 ms , TE = 33 . 1 ms , Flip Angle

FA) = 52 ◦, and multi-band factor = 8, 1200 frames, 15 min/ru. 

he subjects’ heads were fixed with a sponge pad for preventing 

ead movement from affecting the experimental results. During 
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Algorithm 1. The pseudo of optimizing Eq. (2) . 
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he scanning, the subjects need to close eyes, keep relax, and stay 

wake. 

Functional imaging data preprocessing. We used the DPARSF 

oolbox 4 to preprocess the rs-fMRI data. We first deleted the first 

0 time points of each subject, and then conducted the steps in- 

luding slice timing correction, motion correction, normalization 

nd spatial smoothing, on the obtained rs-fMRI data, for adapting 

he subjects to the scanning environment. 

For all imaging data, we followed the automated anatomical 

abeling (AAL) template ( Tzourio-Mazoyer et al., 2002 ) to con- 

truct the functional connectivity network for each subject with 90 

odes. The region-to-region correlation was measured by the Pear- 

on correlation coefficient. 

.1.2. Comparison methods 

The comparison methods include the baseline method L1SVM, 

hree popular methods for neuro-disease diagnosis, i.e., High-Order 

unctional Connectivity (HOFC) ( Zhang et al., 2017a ), Sparse Con- 

ectivity Pattern (SCP) ( Eavani et al., 2015 ), and Connectivity Net- 

ork Analysis method with Discriminative Hub Detection (CNHD) 

 Wang et al., 2019 ), and two deep learning methods, i.e., Simplify 

raph Convolutional networks (SGC) ( Wu et al., 2019 ), Deep Iter- 

tive and Adaptive Learning Graph Neural Networks (DIAL-GNN) 

 Chen et al., 2019 ). We list the details of the comparison methods

s follows. 

• L1SVM extracts the upper triangle part of the FCN of each sub- 

ject as its representation, and then employs the � 1 -norm regu- 

larization term to jointly conduct feature selection and classifi- 

cation. 
• HOFC learns the sparse FCN based on the fully-connected FCN, 

whose element is the Pearson correlation coefficient, by taking 

into account the high-order information of the subjects. 
• SCP searches the sparse FCNs from the fully-connected FCNs 

to effectively explore the heterogeneity across the subjects by 

taking into account the inter-subject variability among the sub- 

jects. 
• CNHD first constructs functional connectivity networks based 

on the rs-fMRI data, and then conducts feature extraction and 

the classification task in an unified framework. 
• SGC first regards the upper triangle part of the fully-connected 

FCN of each subject as its representation as well as uses the 
4 http://rfmri.org/DPARSF . 

s  

t

c

5 
fully-connected FCNs of all subjects to obtain the local struc- 

ture of all subjects, and then designs a graph neural network 

by preserving the original local structure to update the repre- 

sentations of all subjects. 
• DIAL-GNN first extracts the upper triangle part of the FCN of 

each subject as its representation to obtain a original graph, 

and then learns the new representation for each subject. 

L1SVM, DIAL-GNN and SGC extract the upper triangle of the 

ully-connected FCN as the representation of each subject. The 

ethods (e.g., HOFC, SCP, CNHD, and our proposed method) de- 

igned different methods to transfer fully-connected FCNs to sparse 

CNs, followed by extracting the upper triangle part of the sparse 

CN as the representation of each subject. It is noteworthy that all 

ethods can be directly applied for supervised learning but only 

hree methods (e.g., DIAL-GNN, SGC and our method) can be used 

or personalized classification. 

.1.3. Setting-up 

In our experiments, we repeated the 10-fold cross-validation 

cheme 10 times for all methods to report the average re- 

ults as the final results. In the model selection, we set α, β ∈ 

 10 −3 , 10 −2 , . . . , 10 3 } in Eq. (2) , and fixed k = 10 since the value

f k is insensitive to the result of Eq. (2) . We further set C ∈
 2 −10 , 2 −9 , . . . , 2 10 } for � 1 -SVM. We followed the literature to set

he parameters of the comparison methods so that they outputted 

he best results. 

We designed the following experiments to evaluate all meth- 

ds, i.e., the classification performance of both supervised learn- 

ng and personalized classification, the effectiveness of the pro- 

osed multi-graph fusion method, the effectiveness of feature se- 

ection and visualization of the selected brain regions, and the vi- 

ualization of the templates produced by our method. The evalua- 

ion metrics include ACCuracy (ACC), SENsitivity (SEN), SPEcificity 

SPE), and Area Under the ROC Curve (AUC). Besides, we conducted 

he paired-sample t-tests between our method and every compar- 

son method, in terms of ACC, SEN, SPE, and AUC. Moreover, the 

ymbols “∗” and “∗∗”, respectively, indicate that our method has 

tatistically significant difference with p < 0 . 05 and p < 0 . 001 on

he paired-sample t-tests at 95% significance level, compared to the 

omparison method. We report the results in Tables 1–3 . 

http://rfmri.org/DPARSF
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Table 1 

Classification results (%) of all methods on FTD. 

Methods Accuracy Sensitivity Specificity AUC 

L1SVM 64 . 77 ± 3 . 89 ∗ 62 . 54 ± 1 . 56 ∗ 67 . 48 ± 2 . 87 ∗ 65 . 87 ± 1 . 95 ∗

HOFC 79 . 37 ± 4 . 20 ∗ 78 . 59 ± 5 . 37 ∗ 82 . 16 ± 4 . 29 ∗∗ 79 . 52 ± 3 . 88 ∗

SCP 84 . 75 ± 4 . 20 ∗∗ 82 . 59 ± 3 . 77 ∗ 85 . 56 ± 3 . 87 ∗∗ 83 . 93 ± 5 . 43 ∗

CNHD 83 . 59 ± 3 . 67 ∗∗ 81 . 29 ± 2 . 58 ∗ 85 . 67 ± 3 . 33 82 . 67 ± 3 . 87 ∗

DIAL-GNN 85 . 19 ± 1 . 59 ∗∗ 86 . 39 ± 1 . 14 ∗∗ 85.92 ±2.43 84 . 33 ± 1 . 29 ∗∗

SGC 84 . 55 ± 3 . 95 ∗∗ 84 . 86 ± 5 . 33 ∗ 84 . 59 ± 4 . 85 84 . 63 ± 4 . 33 ∗∗

Proposed 86.98 ± 3.06 87.53 ± 3.89 84.14 ± 2.59 87.93 ± 3.59 

Table 2 

Classification results (%) of all methods on OCD. 

Methods Accuracy Sensitivity Specificity AUC 

L1SVM 76 . 67 ± 3 . 26 ∗ 73 . 29 ± 5 . 24 ∗ 77 . 77 ± 2 . 69 ∗ 78 . 59 ± 1 . 88 ∗

HOFC 83 . 92 ± 2 . 36 ∗ 83 . 24 ± 5 . 08 ∗∗ 84 . 11 ± 2 . 12 ∗ 83 . 17 ± 1 . 26 ∗∗

SCP 85 . 83 ± 3 . 42 ∗∗ 85 . 52 ± 4 . 11 ∗ 86 . 80 ± 3 . 87 ∗ 86 . 93 ± 3 . 10 ∗

CNHD 86 . 83 ± 4 . 05 ∗∗ 86 . 98 ± 3 . 87 ∗∗ 86 . 64 ± 4 . 53 ∗∗ 84 . 56 ± 4 . 39 ∗

DIAL-GNN 85 . 59 ± 1 . 55 ∗∗ 85 . 33 ± 2 . 58 ∗ 86 . 39 ± 2 . 77 ∗∗ 85 . 93 ± 2 . 47 ∗

SGC 87 . 06 ± 2 . 43 85 . 52 ± 5 . 26 ∗ 87 . 56 ± 4 . 55 ∗ 86 . 15 ± 5 . 01 ∗∗

Proposed 88.05 ± 4.21 87.52 ± 4.15 89.42 ± 3.56 88.48 ± 4.33 

Table 3 

Classification results (%) of all methods on ADNI. 

Methods Accuracy Sensitivity Specificity AUC 

L1SVM 76 . 88 ± 4 . 25 ∗ 77 . 83 ± 3 . 58 ∗ 76 . 10 ± 2 . 85 ∗ 74 . 95 ± 2 . 36 ∗

HOFC 80 . 25 ± 1 . 72 ∗ 78 . 89 ± 2 . 09 ∗ 81 . 35 ± 2 . 12 ∗∗ 81 . 26 ± 3 . 78 ∗∗

SCP 84 . 89 ± 3 . 98 ∗∗ 85 . 14 ± 3 . 21 ∗ 84 . 80 ± 2 . 83 ∗ 84 . 89 ± 3 . 25 ∗∗

CNHD 85 . 97 ± 4 . 36 ∗∗ 87 . 21 ± 5 . 21 84 . 70 ± 3 . 95 ∗∗ 84 . 65 ± 4 . 47 ∗

DIAL-GNN 86 . 97 ± 1 . 76 ∗∗ 86 . 88 ± 2 . 77 ∗∗ 87 . 02 ± 1 . 33 87 . 68 ± 2 . 73 ∗

SGC 86 . 96 ± 2 . 81 ∗∗ 88 . 24 ± 2 . 85 86 . 15 ± 3 . 66 ∗∗ 88 . 78 ± 4 . 69 ∗∗

Proposed 88.84 ± 3.22 89.55 ± 1.85 88.25 ± 2.49 90.22 ± 3.4 
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.2. Result analysis 

.2.1. Supervised learning 

In the experiments of supervised learning, we used all labeled 

ubjects as the training set. We report the results of all methods in 

ables 1 - 3 and list our observations as follows. 

First, our proposed method achieved the best classification per- 

ormance on all three data sets, in terms of four evaluation metrics, 

ollowed by SGC, DIAL-GNN, CNHD, SCP, HOFC, and L1SVM. More- 

ver, our proposed method has statistically significant difference 

t 95% significance level, compared to most of comparison meth- 

ds, in terms of evaluation metrics including ACC, SEN, SPE, and 

UC. Specifically, our method on average improved by 2.17%, 1.71%, 

nd 1.68%, respectively, compared to the best comparison method 

GC, on FTD, OCD, and AD, for all evaluation metrics. The possi- 

le reasons are that (i) our multi-graph fusion method takes the 

nter-subject variability, the heterogeneity across subjects, and the 

iscriminative ability into account to output homogenous and dis- 

riminative representation, and (ii) our proposed method jointly 

elects features (i.e., brain regions) and conducts classification to 

void the influence of redundant features on high-dimensional 

ata. 

Second, L1SVM uses fully-connected FCNs, and other methods 

i.e., our proposed method, DIAL-GNN, SGC, SCP, and HOFC) learns 

parse FCNs. As a result, L1SVM obtained the worst classification 

erformance. For example, the worst method for learning sparse 

CNs, i.e., HOFC, on average improved by 14.74%, 7.03%, and 3.99%, 

espectively, compared to L1SVM, on FTD, OCD, and AD, in terms 

f all four evaluation metrics. In particular, our proposed method 

uses a fully-connected FCNs with a 1NN FCN from each subject 

o output a sparse FCN for every subject, followed by employ- 

ng the L1SVM to conduct the classification task. On the contrary, 

1SVM directly regards a fully-connected FCN as the representa- 

a

6 
ion for each subject to conduct the classification task. Moreover, 

ur method on average improved by 16.98%, compared to L1SVM, 

n terms of Sensitivity, on all three data sets. This indicates the rea- 

onability of sparse FCNs. That is, the sparse FCN is more suitable 

han the fully-connected FCN for conducting the FCN analysis on 

he rs-fMRI data. 

Third, the methods (e.g., HOFC, SCP, and our method) design 

ifferent models to generate sparse FCNs. Specifically, they first 

enerate the sparse FCNs in different ways and then convert the 

pper triangle parts of the derived FCNs as the new representation 

f the subjects. As a consequence, our method considers the het- 

rogeneity across subjects to outperform other methods (e.g., HOFC 

nd SCP). This demonstrates that it is reasonable for taking into 

ccount the heterogeneity across subjects. In addition, CNHD, SGC, 

nd DIAL-GNN also considers the heterogeneity across subjects and 

utperforms either HOFC or SCP. This verifies the importance of 

he consideration of the heterogeneity across subjects again. Fur- 

hermore, our proposed method is the only one to fuse the infor- 

ation from multiple FCNs so that achieving the best classifica- 

ion performance. This shows that our multi-graph fusion method 

s feasible because it can use the common and complementary in- 

ormation among multiple FCNs to output the discriminative rep- 

esentation of all subjects. 

.2.2. Personalized classification 

To verify the effectiveness of our proposed semi-supervised 

ethod, we randomly selected different percentages of labeled 

ubjects (i.e., 20%, 40%, 60%, and 80%) from the whole data set 

s the training set. In this case, the methods (i.e., L1SVM, HOFC, 

CP, and CNHD) only used labeled subjects to train the classifiers, 

hile the methods (i.e., our method, SGC, and DIAL-GNN) used 

ll subjects (i.e., labeled subjects and unlabeled subjects) to train 
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Fig. 3. Classification results (mean ± standard deviation) of personalized classification on FTD. 

Fig. 4. Classification results (mean ± standard deviation) of personalized classification on OCD. 

Fig. 5. Classification results (mean ± standard deviation) of personalized classification on AD. 
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he classifiers. We report the classification results of all methods 

n Figs. 3–5 . 

Similar to the scenarios of supervised learning, our proposed 

ethod still achieved the best performance, followed by SGC, 

IAL-GNN, CNHD, HOFC, SCP and L1SVM, in terms of semi- 

upervised learning. Moreover, the paired-sample t-tests between 

ur method and every comparison method showed that our pro- 

osed method has statistically significant difference at 95% signif- 

cance level, compared to every comparison method, in terms of 

valuation metrics including ACC, SEN, SPE, and AUC, at different 

abel ratios on each data set. For example, our method on aver- 

ge improved by 1.97% and 14.91%, respectively, compared to the 

est comparison method SGC and the worst comparison method 

1SVM, on three data sets, in terms of all evaluation metrics. Be- 

ides, we have other observations as follows. 

By comparing the semi-supervised learning methods (i.e., SGC, 

IAL-GNN, and our method) with the supervised learning meth- 

ds (i.e., CNHD, HOFC, SCP, and L1SVM), the former methods out- 

erformed the latter methods. Specifically, the former methods on 

verage improved by 8.74%, 6.52%, 6.05%, and 8.34%, respectively, 

ompared to the latter methods, on all three data sets with all 

ifferent percentages of labelled subjects, in terms of ACC, SEN, 

PE, AUC. This reason is that the semi-supervised learning meth- 

ds use more data (i.e., the unlabelled data) than the supervised 

earning methods during the training process. As a result, the semi- 

upervised learning methods may output more robust classifiers 

han the supervised learning methods. In particular, the improve- 

ent of the semi-supervised learning methods over the supervised 

earning methods achieves the maximum while the percentage of 

abeled subjects in the training set is small, i.e., 20%. For exam- 

le, the classification accuracy of our proposed method improved 

y on average 3.08%, 3.71%, 4.15%, and 3.29%, respectively, com- 

ared to the performance of the best method of supervised learn- 

ng, i.e., CNHD, in terms of 20%, 40%, 60%, and 80% of the per-

entage of labeled subjects in the training set, on all three data 

ets. 
d

7 
The percentage of labeled subjects in the training set is small, 

ll methods achieved worse performance. Moreover, the more the 

ercentage of labelled subjects is, the lower the improvement of 

ur proposed method over the comparison methods is. For exam- 

le, all methods achieved worse experiment results with only 20% 

abel subjects for the training process. This contributes to the fact 

hat it is difficult to build robust classifiers without sufficient la- 

eled subjects. On the contrary, the classification performance in- 

reases with the increased percentage of the labeled subjects for 

he training process. For example, the classification accuracy of our 

ethod increased 7.41% from 20% to 40%, in terms of the percent- 

ge of labeled subjects, while improving by 4.47%, from 60% to 80%, 

n all three data sets. The main reason is that the limited labeled 

ubjects is difficult to guarantee the discriminative ability of the 

lassifiers. 

.2.3. Multi-graph fusion effectiveness 

The novelty of our multi-graph fusion method is to automati- 

ally learn both the common information and the complementary 

nformation among multiple FCNs. To verify the effectiveness of 

ur proposed fusion method, we used our method to first gener- 

te a sparse FCN for each subject followed by extracting its vec- 

or representation (i.e., the upper triangle part of the sparse FCN) 

s the new representation of the subjects, and then feed the new 

epresentation to the methods (e.g., L1SVM and SGC) to output the 

lassification performance. We report the experimental results in 

ig. 6 . It is noteworthy that we only analyzed the best and the 

orst comparison methods due to the space limitations. 

From Fig. 6 , the classification performance of the methods 

i.e., L1SVM and SGC) is better than the results of the correspond- 

ng methods in Tables 1 –3 . For example, L1SVM and SGC, respec- 

ively, on average improved by 16.2% and 4.3%, compared to the 

orresponding results in Tables 1 –3 , on all three data sets, in terms 

f all four evaluation metrics. This implies that the sparse FCNs 

utputted by our proposed multi-graph fusion method has strongly 

iscriminative ability. 
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Fig. 6. Classification results of L1SVM and SGC using the sparse FCNs produced by our method on FTD (left), OCD (middle), and ADNI (right). 

Fig. 7. Visualization of top selected brain regions selected and the connected regions by L1SVM (upper) and our method (bottom) on FTD, OCD, and ADNI. 
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.2.4. Feature selection effectiveness 

In this section, we designed two kinds of experiments to in- 

estigate the effectiveness of the selected features by our method. 

pecifically, in our experiments, we repeated the 10-fold cross val- 

dation scheme 10 times, and thus outputting 100 subsets of the 

elected features. We further calculated the selected frequency of 

ll features over all 4005 features, and then reported the features 

ith the frequency over 90 out of 100 times as the top features. 

s a result, our method selected 1270, 898, 923 nodes out of 4005 

odes, respectively, on FTD, OCD, and AD, while L1SVM selected 

477, 1058, and 1213 nodes, respectively. It is noteworthy that each 

ode or feature is related to two brain regions. 

We reported the top selected brain regions based on the se- 

ected features and plot the top selected brain regions of our 

ethod and L1SVM in Fig. 7 . Based on the visualization of the 

op selected brain regions, many selected regions from both our 

ethod and L1SVM have been verified related to the neuro- 

iseases. Specifically, in Fig. 7 (a), most of the nodes selected by our 

ethod occur in frontal and temporal lobes, which is consistent 

ith the current neurobiological findings on FTD ( de Haan et al., 

009 ). However, a large portion of nodes identified by L1SVM have 

ow correlation with FTD. In Fig. 7 (b), our method finds the brain 

egions, such as orbital-frontal cortex, caudate, thalamus, which 

re included in the cortical-striato-thalamic circuits, and is con- 

idered as the theoretical neuroanatomical network of OCD ( Gillan 

t al., 2015; 2011 ). In particular, our method selected the brain re- 

ions throughout the whole brain because AD has been demon- 

trated to be associated with whole brain atrophy ( Schott et al., 

008 ). On the contrary, L1SVM only selected the frontal regions on 

he data set ADNI. 

In our experiments, we first obtained three data sets based on 

he original data, i.e., Feature 1, Feature 2, and Feature 3. Feature 1 
t

8 
epresents the original data sets with high-dimensional data. Fea- 

ure 2 is the data sets with the features selected by our method. 

eature 3 is the data sets with the features unselected by our 

ethod. We fed these new data sets to L1SVM and reported the 

lassification results in Fig. 8 . From Fig. 8 , Feature 2 achieved the 

est performance, followed by Feature 1 and Feature 3. Specifi- 

ally, the classification accuracy of Feature 2 improved on average 

y 3.58%, compared to Feature 1, on all three data sets. The rea- 

on is that the original data contains redundant feature and noise, 

hich affects classification performance. This illustrates (1) the ef- 

ectiveness of the features selected by our method, and (2) feature 

election can improve model performance. 

.2.5. Template visualization 

In Eq. (3) , we denoted G and H , respectively, as the positive and

egative template, to make the outputted representation contain- 

ng discriminative ability. In this section, we visualized the tem- 

lates in Fig. 9 for all three data sets. 

Obviously, the difference between the disease template and the 

ealthy control template is significant. Moreover, the selected brain 

egions in the templates can be found as the top selection regions 

n Fig. 7 . This indicates the outputted templates can make our pro- 

osed method have discriminative ability as well as are possibly 

sed for guiding either the parcellations for new subjects or mea- 

uring the group difference in the study of medical image analysis. 

. Discussion 

In this section, we discuss time complexity of all methods, the 

ariations of our proposed method with different k values, and the 

ariations of our proposed with different initialization, the varia- 

ions of our proposed with different numbers of graphs. 
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Fig. 8. Classification results of L1SVM using three kinds of data (i.e., Feature 1, Feature 2, and Feature 3) on FTD (left), OCD (middle), and ADNI (right). 

Fig. 9. Visualization of templates outputted by our method on FTD, OCD and AD (upper) and healthy control (bottom). 
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Table 4 

Training time (Seconds) of all methods on 

three data sets. 

Dataset FTD OCD AD 

L1SVM 1997 s 951 s 1248 s 

HOFC 3610 s 1857 s 2387s 

SCP 2487 s 1293 1639 s 

CNHD 2937 1433 2108 s 

DIAL-GNN 872 s 407 s 625 s 

SGC 668 s 272 s 438 s 

Proposed 2616 s 1122 s 1753 s 

m

L

c

o

o

A

4

 

t

v  

s  

2

i

n

d  

v

.1. Time complexity analysis 

The multi-graph generation is off-line. Hence, we ignore the 

alculation of the time complexity and the space complexity. The 

ulti-graph fusion method takes a closed-form solution for the op- 

imization of S m ( m = 1 , . . . , M), H and G . The time complexity of

 

m is O (Mn 2 ) and the time complexity of either H or G is O (n 2 ) ,

here M and n, respectively, represent the number of the subjects 

nd the number of brain regions. Hence, the time complexity of 

ur multi-graph fusion method is O (lMn 2 ) , i.e., linear to the sub-

ect size, where l is the iteration number and is less than 50 in our 

xperiments. Moreover, the proposed multi-graph fusion method 

eeds to store S m ( m = 1 , . . . , M), H , and G in the memory with the

pace complexity O (Mn 2 ) . The time complexity of L1SVM is lin- 

ar to the subject size, while its space time complexity is O (Mn 2 )

 Fan et al., 2008 ). Moreover, based on ( Fan et al., 2008 ), L1SVM fast

chieves convergence. 

The time complexity of DIAL-GNN and SGC, respectively, are 

 (T dM 

2 ) and O (M 

2 d) , where M, T , d = 

n (n −1) 
2 , and n, are the

umber of samples, the iterations, the features, the brain regions, 

espectively. The time complexity of HOFC, SCP, CNHD, and L1SVM, 

espectively, are O(M(ω − 1) n 2 + Md) , O(Mn 2 + Md) , O(Mn 3 ) and 

(Md) , where ω is the window length. 

More specifically, two deep learning methods (i.e., DIAL-GNN 

nd SGC) is quadratic to the sample size, while four traditional 

ethods (i.e., HOFC, SCP, CNHD, L1SVM, and our method) is lin- 

ar to the sample size. However, in our data sets, the sample size 

s smaller than the number of the brain regions. Hence, two deep 

earning methods are faster than the traditional methods. 

In Table. 4 , we report the training time of all methods on three

ata sets. HOFC needs the maximal training costs. Our proposed 
a

9 
ethod needs the second most time as it includes the process of 

1SVM. As a result, our proposed multi-graph fusion model is effi- 

ient, i.e., linear to the sample size. For example, the time cost for 

ur proposed multi-graph fusion model is 619 seconds, 171 sec- 

nds, and 505 seconds, respectively, for data sets FTD, OCD, and 

D. 

.2. Sensitivity analysis of k values 

We varied the values of as k = { 5 , 10 , 15 , 20 , 25 } and reported

he classification accuracy of our proposed method with different k 

alues on three data sets in Table 5 . It is noteworthy that the data

et OCD only takes the values of k as k = { 5 , 10 , 15 } as it only has

0 healthy control subjects. As a result, our proposed method is 

nsensitive to the k values as the gap of two different scenarios is 

ot significant in terms of classification accuracy. For example, the 

ifference between the case ‘ k = 10 ’ and other cases (i.e., k � = 10 )

aried on average by 1.12%, 0.26%, 0.79%, on data sets FTD, OCD, 

nd AD, respectively, in terms of classification accuracy. 
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Table 5 

Classification results (ACC%) of our proposed method with different k on three data sets. 

k 5 10 15 20 25 

FTD 84 . 25 ± 3 . 89 86 . 98 ± 1 . 56 86 . 98 ± 2 . 87 86 . 10 ± 1 . 95 86 . 10 ± 1 . 95 

OCD 87 . 53 ± 4 . 20 88 . 05 ± 5 . 37 88 . 05 ± 4 . 29 – –

AD 87 . 71 ± 4 . 20 88 . 84 ± 3 . 77 87 . 53 ± 3 . 87 87 . 53 ± 5 . 43 88 . 06 ± 1 . 95 

Table 6 

Classification results (ACC%) of our proposed method on five different initializations 

Initialization 1 Initialization 2 Initialization 3 Initialization 4 our method 

FTD 86 . 25 ± 1 . 58 85 . 87 ± 4 . 25 86 . 18 ± 3 . 11 85 . 23 ± 1 . 45 86 . 18 ± 1 . 95 

OCD 88 . 05 ± 3 . 78 88 . 05 ± 2 . 56 88 . 05 ± 2 . 66 87 . 49 ± 2 . 77 88 . 58 ± 3 . 16 

AD 88 . 18 ± 3 . 15 87 . 46 ± 2 . 97 89 . 38 ± 4 . 58 87 . 53 ± 5 . 43 88 . 18 ± 2 . 54 

4
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.3. Sensitivity analysis of initialization 

In Algorithm 1 , we initialize S m ( m = 1 , . . . , M) as the average of

 

m, v ( v = 1 , . . . , V ), which makes the optimization of Eq. (2) con-

erge within tens of iterations. Moreover, the result of Eq. (2) is 

nsensitive to the initialization of S m ( m = 1 , . . . , M). 

In the experiment, we used the Matlab function rand(.) to gen- 

rate two uniformly distributed random matrices (i.e., Initialization 

, Initialization 2), and then used the Matlab function randn(.) to 

enerate two random matrices that obey the Gaussian distribution 

i.e., Initialization 3, Initialization 4). In particular, our method set 

he average of A 

m, v ( v = 1 , . . . , V ) as the initialization of S m . From

able 6 , our proposed method is insensitive to the initialization of 

 

m . The main reason is that our optimization method is an iter- 

tive process that updates the value of S m at each iteration, so 

hat even a poor initialization can finally achieve reasonable results 

fter many iterations. In addition, our initialization method con- 

erges faster than other initialization methods. The possible reason 

s our initialization S m is the average of A 

m, v ( v = 1 , . . . , V ), which

s closer to the final S m . 

.4. Effectiveness with different numbers of graphs 

Our proposed method only explored the relationship between 

he fully-connected FCN and the extremely sparse FCN, i.e., the 

NN FCN, aiming at learning the suitable connection number of 

he brain regions for each subject. To do this, our proposed method 

ook into account the following issues such as noise, individ- 

al variability for each subject, and the inter-group heterogeneity 

cross subjects. Actually, we can combine much sparse FCNs with 

he current two FCNs to learn the connection number. Thus, we 

dded five more FCNs (e.g., 3NN, 5NN, 8NN, 10NN, and 15NN) into 

he proposed objective function. As a result, the classification per- 

ormance had no significant difference from the reported one in 

his work, i.e., only on average improving by about 0.25%. The pos- 

ible reason is that two FCNs (such as the fully-connected FCN and 

he 1NN FCN) are enough for our proposed method to automati- 

ally learn the connection number between 1 and n (where n is 

he node number). 

. Conclusion 

In this paper, we proposed a new framework for functional 

onnectivity network analysis using the rs-fMRI data which can 

xplore both the common and the complementary information 

mong multiple FCNs for each subject to improve the discrimina- 

ive ability of the learned representation from the rs-fMRI data. 

he experimental results on three real data sets verified the ef- 

ectiveness of the proposed method, compared to four comparison 

ethods, in terms of the classification performance. 
10 
Our method separately conducts the feature learning and the 

lassification task to achieve the interpretability, i.e., conducting 

eature selection to select the top brain regions related to the 

euro-diseases. However, in the two-stage process, the optimal re- 

ults of the first stage (i.e., the feature learning) do not guarantee 

o output the optimal results in the second stage (i.e., the classifi- 

ation task). On the contrary, SGC combines two stages together to 

chieve the second best performance in our experiments because 

ther comparison methods (e.g., HOFC and SCP) are also the two- 

tage methods. This motivates us to design deep learning models 

o further improve our proposed framework. However, the inter- 

retability is still very challenging in the study of deep learning. 

ence, in the future work, we will extend the proposed framework 

o simultaneously take into account conducting both the feature 

earning and the classification tasks in a unified deep framework 

o achieve its interpretability. 
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ppendix A. Optimization 

In this paper, we employ the alternating optimization strategy 

 Daubechies et al., 2010 ) to optimize S m ( m = 1 , . . . , M), H , and G . 

i) Update S 1 , . . . , S M by fixing H and G 

S 1 , . . . , S M include the representations of positive subjects, neg- 

tive subjects, and unlabeled subjects, so we explain the optimiza- 

ion process one by one. 
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When m th subject is a negative subject, we obtain the objective 

unction with respect to S m as follows: 

in 

S m 

V ∑ 

v =1 

|| S m − A 

m, v || 2 F + α|| S m − H || 2 F + 

β( 
∑ 

p∈G(m ) 

|| S m − S p || 2 F − λm 

∑ 

q ∈F(m ) 

|| S m − S q || 2 F ) 

.t., ∀ i, s m 

i, ·1 = 1 , s m 

i,i 
= 0 , s m 

i, j 
≥ 0 i f j ∈ N (i ) , otherwise 0 . 

(9) 

S m represents the neighbor relationship between two brain re- 

ions (we represent x i as the i th brain region), s m 

i 
represents the 

elationship between x i and other brain region x j (i � = j) . s m 

i 
is only

elated to x i and x j (i � = j) , and is unrelated to s m 

j 
. Therefore, in

ur optimization method, s m 

i 
is independent on s m 

j 
(i � = j) , the ob-

ective function with respect to s m 

i, · is: 

min 

 

m 
i, ·1 =1 ,s m 

i,i 
=0 ,s m 

i, j 
≥0 

V ∑ 

v =1 

|| s m 

i, · − a m, v 
i, · || 2 2 + α|| s m 

i, · − h i, ·|| 2 2 

+ β( 
∑ 

p∈G(m ) 

|| s m 

i, · − s p 
i, ·|| 2 2 − λm 

∑ 

q ∈F(m ) 

|| s m 

i, · − s q 
i, ·|| 2 2 ) (10) 

Expanding Eq. (10) , we have 

min 

 

m 
i, ·1 =1 ,s m 

i,i 
=0 ,s m 

i, j 
≥0 

V ∑ 

v =1 

T r(s m 

i, · − a m, v 
i, · ) T (s m 

i, · − a m, v 
i, · ) 

+ αT r(s m 

i, · − h i, ·) T (s m 

i, · − h i, ·) 

+ β( 
∑ 

p∈G(m ) 

T r(s m 

i, · − s p 
i, ·) 

T (s m 

i, · − s p 
i, ·) 

−λm 

∑ 

q ∈F(m ) 

T r(s m 

i, · − s q 
i, ·) 

T (s m 

i, · − s q 
i, ·) ) (11) 

Expanding Eq. (11) , we have 

min 

 

m 
i, ·1 =1 ,s m 

i,i 
=0 ,s m 

i, j 
≥0 

V ∑ 

v =1 

T r(s m 

T 

i, · s m 

i, · − s m 

T 

i, · a m, v 
i, · − a m, v T 

i, · s m 

i, · + a m, v T 
i, · a m, v 

i, · ) 

+ αT r(s m 

T 

i, · s m 

i, · − s m 

T 

i, · h i, · − h 

T 
i, ·s 

m 

i, · + h 

T 
i, ·h i, ·) 

+ β( 
∑ 

p∈G(m ) 

T r(s m 

T 

i, · s m 

i, · − s m 

T 

i, · s p 
i, · − s p 

T 

i, · s m 

i, · + s p 
T 

i, · s p 
i, ·) 

−λm 

∑ 

q ∈F(m ) 

T r(s m 

T 

i, · s m 

i, · − s m 

T 

i, · s q 
i, · − s q 

T 

i, · s m 

i, · + s q 
T 

i, · s q 
i, ·)) (12) 

After that, we obtain: 

min 

 

m 
i, ·1 =1 ,s m 

i,i 
=0 ,s m 

i, j 
≥0 

T r((V + α + β(k − λm k )) s m 

T 

i, · s m 

i, ·

−2( 
V ∑ 

v =1 

a m, v T 
i, · + αh 

T 
i, · + β( 

k ∑ 

p=1 

s p 
T 

i, · − λm 

k ∑ 

q =1 

s q 
T 

i, · ) s 
m 

i, ·

+ 

V ∑ 

v =1 

a m, v T 
i, · a m, v 

i, · + αh 

T 
i, ·h i, · + β( 

k ∑ 

p=1 

s p 
T 

i, · s p 
i, · − λm 

k ∑ 

q =1 

s q 
T 

i, · s q 
i, ·)) (13) 

After conducting mathematical transformation, we have 

min 

 

m 
i, ·1 =1 ,s m 

i,i 
=0 ,s m 

i, j 
≥0 

|| s m 

i, · − f m 

−
i, · || 2 2 (14) 

here 

 

m 

−
i, · = 

∑ V 
v =1 a 

m, v T 
i, · + αh 

T 
i, · + β( 

∑ k 
p=1 s 

p T 

i, · − λm 

∑ k 
q =1 s 

q T 

i, · ) 

V + α + β(k − λm k ) 
∈ R 

n ×1 

(15) 

We consider the Lagrangian Function of problem Eq. (14) as 

 (s m 

i, ·, ϕ 1 , ω) = || s m 

i, · − f m 

−
i, · || 2 2 − ϕ 1 (s m 

i, ·1 − 1) − ω s m 

i, · (16) 
11 
here ϕ 1 is a Lagrange multiplier and ω is a vector of nonnega- 

ive Lagrange multipliers. Conducting the differential with respect 

o s m 

i, j 
and setting the results as zero, we obtain: 

dL 

ds m 

i, j 

= s m 

i, j − f m 

−
i, j − 1 

2 

ϕ 1 − 1 

2 

ω j = 0 (17) 

here f m 

−
i, j 

is the jth element of f m 

−
i, · . To facilitate the calculation, 

e set σ1 = 

1 
2 ϕ 1 , τ j = 

1 
2 ω j . 

The complementary slackness of the Karush–Kuhn–Tucker 

KKT) conditions implies that the condition w τ j = 0 holds while 

 

m 

i, j 
> 0 . Thus, we have the closed-form solution for s m 

i, j 
as: 

 

m 

i, j = ( f m 

−
i, j + σ1 ) + , j = 1 , . . . , n (18) 

here f m 

−
i, j 

is the jth element of f m 

−
i, · . 

By following the same process from Eqs. (9) to (18) , we have 

 

m 

i, j = 

⎧ ⎨ 

⎩ 

( f m 

−
i, j 

+ σ1 ) + , m ∈ D 

( f m 

+ 
i, j 

+ σ2 ) + , m ∈ E 
( f m 

i, j 
+ σ3 ) + , m ∈ U 

(19) 

here 
 

 

 

f m 

+ 
i, j 

= 

∑ V 
v =1 a 

m, v T 
i, j 

+ αg T 
i, j 

+ β( 
∑ k 

p=1 s 
p T 

i, j 
−λm 

∑ k 
q =1 s 

q T 

i, j 
) 

V + α+ β(k −λm k ) 

f m 

i, j 
= 

∑ V 
v =1 a 

m, v T 
i, j 

+ β( 
∑ k 

p=1 s 
p T 

i, j 
−λm 

∑ k 
q =1 s 

q T 

i, j 
) 

V + β(k −λm k ) 
. 

(20) 

1 , σ2 and σ3 are the Lagrange multipliers. 

ii) Update H and G by fixing S 1 , . . . , S M 

When S 1 , . . . , S M are fixed, the objective function with respect 

o H and G are: 
 

 

 

 

 

 

 

min 

h i, ·1 =1 ,h i,i =0 ,h i, j ≥0 

|D| ∑ 

m =1 

|| S m − H || 2 F 

min 

g i, ·1 =1 ,g i,i =0 ,g i, j ≥0 

|E| ∑ 

m =1 

|| S m − G || 2 F 

(21) 

According to the KKT conditions, we have: 

h i, j = ( ̂  s m 

−
i, j 

+ σ4 ) + 
g i, j = ( ̂  s m 

+ 
i, j 

+ σ5 ) + 
(22) 

here ˆ s m 

−
i, j 

= ( 
∑ 

m ∈D 
s m 

T 

i, j 
) / |D| , ˆ s m 

+ 
i, j 

= ( 
∑ 

m ∈E 
s m 

T 

i, j 
) / |E| , σ4 and σ5 are La-

range multipliers. 

The values of the Lagrange multipliers σ1 , σ2 , σ3 , σ4 , and σ5 , 

an be obtained by Lemma 1 ( Duchi et al., 2008 ). For simplicity,

e list the details of σ3 as follows and the values of σ1 , σ2 , σ4 ,

nd σ5 can be obtained by similar principles. 

emma 1. By denoting s m ∗
i, · the optimal solution in Eq. (18) , letting 

and u be two indices, and f m 

i,r 
> f m 

i,u 
, if s m ∗

i,r 
= 0 , then s m ∗

i,u 
must be

qual to zero. 

Based on Lemma 1 , some integers I = [ ρ] , 1 ≤ ρ ≤ n, meet the

on-zero components of the sorted optimal solutions, i.e., 

3 = 

1 

ρ
(1 −

ρ∑ 

j 

f m 

i, j ) . (23) 

s a result, the optimal s m ∗
i, · can be described as s m ∗

i, j 
= max { f m 

i, j 
+

3 , 0 } , where the value of the optimal ρ is automatically obtained 

y Lemma 2 ( Duchi et al., 2008 ). 

emma 2. Let η represents the vector after sorting f m 

i, · in a descend- 

ng order, the number of strictly non-negative elements in s m 

i, · is ρ = 

ax { j ∈ [ n ] : η j − 1 
j 
( 
∑ j 

i =1 
ηi − 1) > 0 } . 
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Based on Lemma 2 , the non-zero number in the i th row s m 

i, ·,
.e., the number of brain regions connected to the i th brain region, 

s different from the non-zero number in the j th row s m 

j, · ( i � = j).

t is noteworthy that previous sparse methods set the same num- 

er of brain regions connected to each brain region. Obviously, our 

ethod is more flexible, compared to previous methods. 

ppendix B. Convergence 

Theorem 2 guarantees the convergence of Algorithm 1 . 

heorem 2. Algorithm 1 decreases the objective value of Eq. 

2) monotonically in each iteration until convergence. 

roof. We first denote S m 

(t+1) 
, G 

(t+1) , and H 

(t+1) , as the updated

f S m 

(t) 
, G 

(t) , and H 

(t) , respectively, where t is the tth iteration. If

 

1 , . . . , S M , and G are fixed, H has a closed form solution, so we

ave: 

M ∑ 

 =1 

V ∑ 

v =1 

|| S m 

(t+1) − A 

m, v || 2 F + βR 2 (S 1 
(t+1) 

, . . . , S M 

(t+1) 

) 

+ αR 1 (H 

(t+1) , G 

(t+1) , S 1 
(t+1) 

, . . . , S M 

(t+1) 

) 

≤
M ∑ 

m =1 

V ∑ 

v =1 

|| S m 

(t+1) − A 

m, v || 2 F + βR 2 (S 1 
(t+1) 

, . . . , S M 

(t+1) 

) 

αR 1 (H 

(t) , G 

(t+1) , S 1 
(t+1) 

, . . . , S M 

(t+1) 

) (24) 

If S 1 , . . . , S M , and H are fixed, G has a closed form solution, so

e have: 

M ∑ 

 =1 

V ∑ 

v =1 

|| S m 

(t+1) − A 

m, v || 2 F + βR 2 (S 1 
(t+1) 

, . . . , S M 

(t+1) 

) 

+ αR 1 (H 

(t) , G 

(t+1) , S 1 
(t+1) 

, . . . , S M 

(t+1) 

) 

≤
M ∑ 

m =1 

V ∑ 

v =1 

|| S m 

(t+1) − A 

m, v || 2 F + βR 2 (S 1 
(t+1) 

, . . . , S M 

(t+1) 

) 

+ αR 1 (H 

(t) , G 

(t) , S 1 
(t+1) 

, . . . , S M 

(t+1) 

) (25) 

The optimization of S m is independent on the optimization of 

 

m 

′ 
(m 

′ � = m ) . If H and G are fixed, S m has a closed form solution.

hat is, 

M ∑ 

 =1 

V ∑ 

v =1 

|| S m 

(t+1) − A 

m, v || 2 F + βR 2 (S 1 
(t+1) 

, . . . , S M 

(t+1) 

) 

+ αR 1 (H 

(t) , G 

(t) , S 1 
(t+1) 

, . . . , S M 

(t+1) 

) 

≤
M ∑ 

m =1 

V ∑ 

v =1 

|| S m 

(t) − A 

m, v || 2 F + βR 2 (S 1 
(t) 

, . . . , S M 

(t) 

) 

+ αR 1 (H 

(t) , G 

(t) , S 1 
(t) 

, . . . , S M 

(t) 

) (26) 

Combining Eqs. (24) and (25) with Eq. (26) , we have, 

M ∑ 

 =1 

V ∑ 

v =1 

|| S m 

(t+1) − A 

m, v || 2 F + βR 2 (S 1 
(t+1) 

, . . . , S M 

(t+1) 

) 

+ αR 1 (H 

(t+1) , G 

(t+1) , S 1 
(t+1) 

, . . . , S M 

(t+1) 

) 

≤
M ∑ 

m =1 

V ∑ 

v =1 

|| S m 

(t) − A 

m, v || 2 F + βR 2 (S 1 
(t) 

, . . . , S M 

(t) 

) 

+ αR 1 (H 

(t) , G 

(t) , S 1 
(t) 

, . . . , S M 

(t) 

) (27) 

Eq. (27) indicates that Algorithm 1 decreases the objective value 

f Eq. (2) in each iteration. Hence, the proof of Theorem 2 is 
ompleted. �
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